Advertisements
Advertisements
Question
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Solution
Let I = `int_0^1 "e"^(x^2)*"x"^3 "d"x`
= `int_0^1 "e"^(x^2)*x^2* x "d"x`
Put x2 = t
∴ 2x dx = dt
∴ x dx = `1/2 "dt"`
When x = 0, t = 0
When x = 1, t = 1
∴ I = `1/2 int_0^1 "e"^"t"*"t" "dt"`
= `1/2{["t"int"e"^"t" "dt"]_0^1 - int_0^1["d"/"dt"("t")int"e"^"t" "dt"]"dt"}`
= `1/2[["t"*"e"^"t"]_0^1 - int_0^1 1*"e"^"t" "dt"]`
= `1/2 [(1*"e"^1 - 0) - ["e"^"t"]_0^1]`
= `1/2 ["e" - ("e"^1 - "e"^0)]`
= `1/2 ("e" - "e" + 1)`
∴ I = `1/2`
APPEARS IN
RELATED QUESTIONS
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Fill in the blank : `int_2^3 x^4*dx` = _______
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_1^3 log x·dx`