Advertisements
Advertisements
प्रश्न
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
उत्तर
Let I = `int_0^1 "e"^(x^2)*"x"^3 "d"x`
= `int_0^1 "e"^(x^2)*x^2* x "d"x`
Put x2 = t
∴ 2x dx = dt
∴ x dx = `1/2 "dt"`
When x = 0, t = 0
When x = 1, t = 1
∴ I = `1/2 int_0^1 "e"^"t"*"t" "dt"`
= `1/2{["t"int"e"^"t" "dt"]_0^1 - int_0^1["d"/"dt"("t")int"e"^"t" "dt"]"dt"}`
= `1/2[["t"*"e"^"t"]_0^1 - int_0^1 1*"e"^"t" "dt"]`
= `1/2 [(1*"e"^1 - 0) - ["e"^"t"]_0^1]`
= `1/2 ["e" - ("e"^1 - "e"^0)]`
= `1/2 ("e" - "e" + 1)`
∴ I = `1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`