Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
उत्तर
Let I = `int_0^1 1/(1 + sqrt(x))*dx`
Put `sqrt(x)` = t
∴ x = t2 and dx = 2t·dt
When x = 0, t = 0
When x = , t = 1
∴ I = `int_0^1 1/(1 + t)2t*dt`
= `2 int_0^1 t/(1 + t)*dt`
= `2 int_0^1 ((1 + t) - 1)/(1 + t)*dt`
= `2 int_0^1 (1 - 1/(1 + t))*dt`
= `2[t - log|1 + t|]_0^1`
= `2[1 - log2 - 0 + log1]`
= 2(1 - log 2) ...[∵ log 1 = 0]
= 2 – 2log 2
= 2 – log 4.
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_1^2 x^2*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`