Advertisements
Advertisements
प्रश्न
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
उत्तर
Consider R.H.S : `int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Let I = `int_0^"a""f"(x)"d"x + int_0^"a" "f"(2"a" - x)"d"x`
= I1 + I2 ........(i)
Consider I2 = `int_0^"a" "f"(2"a" - x) "d"x`
Put 2a – x = t
∴ − dx = dt
∴ dx = – dt
When x = 0, t = 2a – 0 = 2a
and when x = a, t = 2a – a = a
= I2 = `int_(2"a")^"a" "f"("t")(- "dt")`
= `-int_(2"a")^"a" "f"("t") "dt"`
= `-int_"a"^(2"a") "f"("t") "dt"` ......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"b"^"a" "f"(x) "d"x]`
= `-int_"a"^(2"a") "f"(x) "d"x` ......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"a"^"b" "f"("t") "d"x]`
From (i), I = I1 + I2
= `int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
= `int_0^"a" "f"(x) "d"x + int_"a"^(2"a") "f"(x) "d"x`
= `int_0^(2"a") "f"(x) "d"x` .......`[∵ int_"a"^"b" "f"(x) "d"x = int_"a"^"c" "f"(x) "d"x + int_"c"^"b" "f"(x) "d"x; "a" < "c" < "b"]`
= L.H.S
∴ `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3x^2log x dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`