मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that: ∫02af(x) dx=∫0af(x) dx+∫f(2a-x) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

बेरीज

उत्तर

Consider R.H.S : `int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

Let I = `int_0^"a""f"(x)"d"x + int_0^"a" "f"(2"a" - x)"d"x`

= I1 + I2    ........(i)

Consider I2 = `int_0^"a" "f"(2"a" - x)  "d"x`

Put 2a – x = t

∴ − dx = dt

∴ dx = – dt

When x = 0, t = 2a – 0 = 2a

and when x = a, t = 2a – a = a

= I2 = `int_(2"a")^"a" "f"("t")(- "dt")`

= `-int_(2"a")^"a" "f"("t") "dt"`

= `-int_"a"^(2"a") "f"("t") "dt"`   ......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"b"^"a" "f"(x)  "d"x]`

= `-int_"a"^(2"a") "f"(x) "d"x`   ......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"a"^"b" "f"("t")  "d"x]`

From (i), I = I1 + I2

= `int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

= `int_0^"a" "f"(x)  "d"x + int_"a"^(2"a") "f"(x)  "d"x`

= `int_0^(2"a") "f"(x)  "d"x`  .......`[∵ int_"a"^"b" "f"(x) "d"x = int_"a"^"c" "f"(x) "d"x + int_"c"^"b" "f"(x)  "d"x; "a" < "c" < "b"]`

= L.H.S

∴ `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Long Answers III

संबंधित प्रश्‍न

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Solve the following.

`int_1^3x^2log x  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×