Advertisements
Advertisements
प्रश्न
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
पर्याय
True
False
उत्तर
`int_"a"^"b" f(x)/(f(x) + f("a" + "b" - x))*dx`
= `(1)/(2)("b" - "a")`
Here, f(x) = `sqrt(x)`, a = 1, b = 2 True.
APPEARS IN
संबंधित प्रश्न
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`