Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
उत्तर
Let, I = `int_0^1 (x^2 + 3x + 2)/sqrtxdx`
= `int_0^1[x^2/sqrtx + (3x)/sqrtx + 2/sqrtx]dx`
= `int_0^1[x^2/x^{1/2} + (3x)/x^{1/2} + 2/x^{1/2}]dx`
= `int_0^1[x^{3/2} + 3x^{1/2} + 2/sqrtx]dx`
I = `int_0^1 x^{3/2}dx + 3int_0^1 x^{1/2}dx + 2int_0^1 1/sqrtxdx`
= `[x^{5/2}/(5/2)]_0^1 + 3[x^{3/2}/(3/2)]_0^1 + 2[2sqrtx]_0^1`
= `[1^{5/2}/(5/2) - 0^{5/2}/(5/2)] + 3[1^{3/2}/(3/2) - 0^{3/2}/(3/2)] + 2[2sqrt1 - 2sqrt0]`
I = `[1 xx 2/5] + 3[1 xx 2/3] + 2[2 xx 1 - 2 xx 0]`
I = `2/5 + 3 xx 2/3 + 2 xx 2`
= `2/5 + 6/3 + 4 = (6 + 30)/15 + 4 = (6 + 30 + 60)/15 = 96/15 = 32/5`
∴ I = `32/5`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following:
`int_0^1e^(x^2)x^3dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx