Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
उत्तर
Given, `int_1^"a" (3x^2 + 2x + 1)*dx` = 11
∴ `[(3x^3)/3+ (2x^2)/2 + x]_1^"a"` = 11
∴ `[x^3 + x^2 + x]_1^"a"` = 11
∴ (a3 + a2 + a) – (1 + 1 + 1) = 11
∴ a3 + a2 + a – 3 = 11
∴ a3 + a2 + a – 14 = 0
∴ (a – 2)(a2 + 3a + 7) = 0
∴ a = 2 or a2 + 3a + 7 = 0
But a2 + 3a + 7 = 0 does not have eal roots.
∴ a = 2.
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_1^3x^2logx dx`