Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
उत्तर
Given, `int_1^"a" (3x^2 + 2x + 1)*dx` = 11
∴ `[(3x^3)/3+ (2x^2)/2 + x]_1^"a"` = 11
∴ `[x^3 + x^2 + x]_1^"a"` = 11
∴ (a3 + a2 + a) – (1 + 1 + 1) = 11
∴ a3 + a2 + a – 3 = 11
∴ a3 + a2 + a – 14 = 0
∴ (a – 2)(a2 + 3a + 7) = 0
∴ a = 2 or a2 + 3a + 7 = 0
But a2 + 3a + 7 = 0 does not have eal roots.
∴ a = 2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate:
`int_0^1 |x| dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_1^3x^2 logx dx`