Advertisements
Advertisements
प्रश्न
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
उत्तर
Let I = `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Put sin–1 x = t
∴ `(1)/sqrt(1 - x^2)*dx` = dt
When x = 1, t = `sin^-1 1 = pi/(2)`
When x = `1/sqrt(2), t = sin^-1 1/sqrt(2) = pi/(4)`
Also, `cos^-1 x = pi/2 - sin^-1x = pi/(2) - t`
∴ I = `int_(i/4)^(pi/2) e^(pi/2 - t)*t dt`
= `e^(pi/2) int_(i/4)^(pi/2) te^-t dt`
= `e^(pi/2) {[t int e^-t dt]_(pi/4)^(pi/2) - int_(i/4)^(pi/2)[d/dt (t) int e^-t dt]*dt}`
= `e^(pi/2){[ - te^-t]_(pi/4)^(pi/2) - int_(i/4)^(pi/2) (1)( - e^-t)*dt}`
= `e^(pi/2) {(-pi)/(2) e^(-pi/2) + pi/(4) e^(-pi/4) + int_(i/4)^(pi/2) e^-t *dt}`
= `- pi/(2) e^o + pi/(4) e^(pi/2 - pi/4) + e^(pi/2)[- e^-t]^(pi/2)`
= `- pi/(2) + pi/(4) e^(pi/4) + e^(pi/2)[ - e^(-pi/2) + e^((-pi)/4)]`
= `- pi/(2) + e^(pi/4) pi/(4) - e^o + ^(pi/2 - pi/4)`
= `- pi/(2) + e^(pi/4) pi/(4) - 1 + e^(pi/4)`
= `e^(pi/4) (pi/4 + 1) - (pi/2 + 1)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2 logx dx`