हिंदी

Evaluate the following : ∫-23|x-2|⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_(-2)^(3) |x - 2|*dx`

योग

उत्तर

|x – 2| = 2 – x, if x < 2
= x – 2, if x ≥ 2

∴ `int_(-2)^(3) |x - 2|*dx = int_(-2)^(3) |x - 2|*dx + int_(2)^(3)|x - 2|*dx`

= `int_(-2)^(3) (2 - x)*dx + int_(2)^(3) (x - 2)*dx`

= `[(2 - x)^2/((- 2))]_(-2)^(2) + [(x - 2)^2/2]_3^2`

= `[0 - (4)^2/(- 2)^2] + [1^2/2 - 0^2/2]`

= `8 + (1)/(2)`

= `(17)/(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.1 | पृष्ठ १७६

संबंधित प्रश्न

Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×