Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
उत्तर
|x – 2| = 2 – x, if x < 2
= x – 2, if x ≥ 2
∴ `int_(-2)^(3) |x - 2|*dx = int_(-2)^(3) |x - 2|*dx + int_(2)^(3)|x - 2|*dx`
= `int_(-2)^(3) (2 - x)*dx + int_(2)^(3) (x - 2)*dx`
= `[(2 - x)^2/((- 2))]_(-2)^(2) + [(x - 2)^2/2]_3^2`
= `[0 - (4)^2/(- 2)^2] + [1^2/2 - 0^2/2]`
= `8 + (1)/(2)`
= `(17)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate:
`int_0^1 |x| dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`