Advertisements
Advertisements
प्रश्न
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
उत्तर
Let I = `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
= `int_0^4 (1)/sqrt(x^2 + 2x + 1 - 1 + 3)*dx`
= `int_0^4 (1)/((sqrt(x + 1))^2 + 2)*dx`
= `int_0^4 (1)/sqrt((x + 1)^2 + (sqrt(2))^2)*dx`
= `[log |x + 1 + sqrt((x + 1)62 + (sqrt(2))^2|]_0^4`
= `log |5 + sqrt(27)| - log| 1 + sqrt(3)|`
= `log |5 + 3sqrt(3)| - log| 1 + sqrt(3)|`
∴ I = `log |(5 + 3sqrt(3))/(1 + sqrt(3))|`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`