Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
उत्तर
Let I = `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Put x = tan t, i.e. t = tan–1x
∴ dx = sec2t dt
When x = 1, t = tan–11 = `pi/(4)`
When x = 0, t = tan–1 0 = 0
∴ I = `int_0^(pi/4) (1/(1 + tan^2t))sin^-1 ((2tan t)/(1 + tan^2t))sec^2t*dt`
= `int_0^(pi/4) (1)/(sec^2t) sin^-1 (sin 2t) sec^2t*dt`
= `int_0^(pi/4) 2t*dt`
= `2int_0^(pi/4)t*dt`
= `2[(t^2)/2]_0^(pi/4)`
= `2[pi/(32) - 0]`
= `pi^2/(16)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`