Advertisements
Advertisements
प्रश्न
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
उत्तर
Let I = `int_0^1 dx/(2x + 5)`
Put 2x + 5 = t
∴ 2dx = dt
∴ dx = `"dt"/(2)`
When x = 0, t = 2(0) + 5 = 5
When x = 1, t = 2(1) + 5 = 7
∴ I = `(1)/(2) int_5^7 "dt"/"t"`
= `(1)/(2)[log|"t"|]_5^7`
= `(1)/(2)(log 7 - log 5)`
= `(1)/(2)log(7/5)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Evaluate `int_1^3 log x "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`