हिंदी

Evaluate the following : ∫0111+x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`

योग

उत्तर

Let I = `int_0^1 1/(1 + sqrt(x))*dx`
Put `sqrt(x)` = t
∴ x = t2 and dx = 2t·dt
When x = 0, t = 0
When x = , t = 1

∴ I = `int_0^1 1/(1 + t)2t*dt`

= `2 int_0^1 t/(1 + t)*dt`

= `2 int_0^1 ((1 + t) - 1)/(1 + t)*dt`

= `2 int_0^1 (1 - 1/(1 + t))*dt`

= `2[t - log|1 + t|]_0^1`

= `2[1 - log2 - 0 + log1]`

= 2(1 - log 2)                             ...[∵ log 1 = 0]
= 2 – 2log 2
= 2 – log 4.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.03 | पृष्ठ १७६

संबंधित प्रश्न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Solve the following `int_1^3 x^2log x dx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×