Advertisements
Advertisements
प्रश्न
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
विकल्प
True
False
उत्तर
Let I = `int_"a"^"b" f(x)*dx`
Put x = – 1
∴ dx = – dt
When x = a, t = – a
When x = b, t = – b
∴ I = `int_(-a)^(-b) f(-"t") (-"dt")`
= `int_(-"b")^(-"a") f(- "t")*"dt" ...[because int_"a"^"b" f(x)*dx = -int_"b"^"a" f(x)*dx]`
= `int_(-"b")^(-"a") f(-x)*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt]`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`