हिंदी

Evaluate: ∫011-x1+x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`

मूल्यांकन

उत्तर

Let `I = int_0^1 sqrt((1 - x)/(1 + x)) * dx`

Put x = cos θ

dx = − sinθ dθ

When x = 0, cos θ = 0 = cos `pi/(2)` ∴ θ = `pi/(2)`

When x = 1, cos θ = 1 = cos 0 ∴ θ = 0

∴ `I = int_(pi/2)^0 sqrt(( - cos theta)/(1 + cos theta)) * (- sin θ) dθ`

= `int_(pi/2)^0 sqrt((2sin^2(theta//2))/(2cos^2(theta//2)))(- 2sin  theta/2 cos  theta/2) * dθ`

= `int_(pi/2)^0 (sin(theta//2)/(cos(theta//2)))[- 2sin (theta/2) cos (theta/2)] * dθ`

= `int_(pi/2)^0 - 2sin^2(theta/2) * dθ`

= `- int_(pi/2)^0 (1 - cos θ) * dθ`

= `-[theta - sintheta]_(pi/2)^0`

= `-[(0 - sin0) - (pi/2 - sin  pi/2)]`

= `-[0 - pi/2 + 1]`

= `pi/(2) - 1`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 2.11 | पृष्ठ १७२

संबंधित प्रश्न

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×