Advertisements
Advertisements
Question
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Solution
Let `I = int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Put x = cos θ
dx = − sinθ dθ
When x = 0, cos θ = 0 = cos `pi/(2)` ∴ θ = `pi/(2)`
When x = 1, cos θ = 1 = cos 0 ∴ θ = 0
∴ `I = int_(pi/2)^0 sqrt(( - cos theta)/(1 + cos theta)) * (- sin θ) dθ`
= `int_(pi/2)^0 sqrt((2sin^2(theta//2))/(2cos^2(theta//2)))(- 2sin theta/2 cos theta/2) * dθ`
= `int_(pi/2)^0 (sin(theta//2)/(cos(theta//2)))[- 2sin (theta/2) cos (theta/2)] * dθ`
= `int_(pi/2)^0 - 2sin^2(theta/2) * dθ`
= `- int_(pi/2)^0 (1 - cos θ) * dθ`
= `-[theta - sintheta]_(pi/2)^0`
= `-[(0 - sin0) - (pi/2 - sin pi/2)]`
= `-[0 - pi/2 + 1]`
= `pi/(2) - 1`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following `int_1^3 x^2log x dx`
Solve the following.
`int_1^3x^2 logx dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`