English

Evaluate: ∫011-x1+x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`

Evaluate

Solution

Let `I = int_0^1 sqrt((1 - x)/(1 + x)) * dx`

Put x = cos θ

dx = − sinθ dθ

When x = 0, cos θ = 0 = cos `pi/(2)` ∴ θ = `pi/(2)`

When x = 1, cos θ = 1 = cos 0 ∴ θ = 0

∴ `I = int_(pi/2)^0 sqrt(( - cos theta)/(1 + cos theta)) * (- sin θ) dθ`

= `int_(pi/2)^0 sqrt((2sin^2(theta//2))/(2cos^2(theta//2)))(- 2sin  theta/2 cos  theta/2) * dθ`

= `int_(pi/2)^0 (sin(theta//2)/(cos(theta//2)))[- 2sin (theta/2) cos (theta/2)] * dθ`

= `int_(pi/2)^0 - 2sin^2(theta/2) * dθ`

= `- int_(pi/2)^0 (1 - cos θ) * dθ`

= `-[theta - sintheta]_(pi/2)^0`

= `-[(0 - sin0) - (pi/2 - sin  pi/2)]`

= `-[0 - pi/2 + 1]`

= `pi/(2) - 1`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Solve the following `int_1^3 x^2log x dx`


Solve the following.

`int_1^3x^2 logx dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×