Advertisements
Advertisements
Question
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Solution
Let I = `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
= `int_0^1 ((x^2 + 3x + 2)/x^(1/2)) "d"x`
= `int_0^1 (x^2/x^(1/2) + (3x)/(x^(1/2)) + 2/(x^(1/2))) "d"x`
= `int_0^1 (x^(3/2) + 3x^(1/2) + 2x^(-1/2)) "d"x`
= `int_0^1 x^(3/2) "d"x + 3int_0^1 x^(1/2) "d"x + 2int_0^1 x^(-1/2) "d"x`
= `[(x^(5/2))/(5/2)]_0^1 + 3[(x^(3/2))/(3/2)]_0^1 + 2[(x^(1/2))/(1/2)]_0^1`
= `2/5(1 - 0) + 3 xx 2/3(1 - 0) + 2 xx 2(1 - 0)`
= `2/5 + 2 + 4`
∴ I = `32/5`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`