Advertisements
Advertisements
Question
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Solution
Let I = `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
= `int_0^1 1/(sqrt(1 + x) + sqrt(x)) xx (sqrt(1 + x) - sqrt(x))/(sqrt(1 + x) - sqrt(x)) "d"x`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/((sqrt(1 + x))^2 - (sqrt(x))^2) "d"x`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/(1 + x - x) "d"x`
= `int_0^1 [(1 + x)^(1/2) - x^(1/2)] "d"x`
= `int_0^1 (1 + x)^(1/2) "d"x - int_0^1 x^(1/2) "d"x`
= `[(1 + x)^(3/2)/(3/2)]_0^1 - [(x^(3/2))/(3/2)]_0^1`
= `2/3 [(2)^(3/2) - (1)^(3/2)] - 2/3 [(1)^(3/2) - 0]`
= `2/3(2sqrt(2) - 1) - 2/3(1)`
= `(4sqrt(2))/3 - 2/3 - 2/3`
∴ I = `4/3 (sqrt(2) - 1)`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`