Advertisements
Advertisements
प्रश्न
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
उत्तर
Let I = `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
= `int_0^1 1/(sqrt(1 + x) + sqrt(x)) xx (sqrt(1 + x) - sqrt(x))/(sqrt(1 + x) - sqrt(x)) "d"x`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/((sqrt(1 + x))^2 - (sqrt(x))^2) "d"x`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/(1 + x - x) "d"x`
= `int_0^1 [(1 + x)^(1/2) - x^(1/2)] "d"x`
= `int_0^1 (1 + x)^(1/2) "d"x - int_0^1 x^(1/2) "d"x`
= `[(1 + x)^(3/2)/(3/2)]_0^1 - [(x^(3/2))/(3/2)]_0^1`
= `2/3 [(2)^(3/2) - (1)^(3/2)] - 2/3 [(1)^(3/2) - 0]`
= `2/3(2sqrt(2) - 1) - 2/3(1)`
= `(4sqrt(2))/3 - 2/3 - 2/3`
∴ I = `4/3 (sqrt(2) - 1)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`