Advertisements
Advertisements
प्रश्न
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
उत्तर
Let I = `int_(-2)^3 (1)/(x + 5)*dx`
= `[log |x + 5|]_(-2)^3`
= [log |3 + 5| – log |–2 + 5|]
= log 8 – log 3
∴ I = `log(8/3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
`int_0^1 1/(2x + 5)dx` = ______
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`