Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
उत्तर
Let I = `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Put sin x = t
∴ cos x·dx = dt
When x = `pi/(2), t = sin pi/(2)` = 1
When x = 0, t = sin 0 = 0
∴ I = `int_0^1 dt/((1 + t)(2 + t)`
= `int_0^1((2 + t) - (1 + t))/((1 + t)(2 + t))*dt`
= `int_0^1[1/(1 + t) - 1/(2 + t)]*dt`
= `int_0^1 1/(1 + t)*dt - int_0^1 1/(2 + t)*dt`
= `[log |1 + t|]_0^1 - [log|2 + t|]_0^1`
= [log(1 + 1) – log(1 + 0)] – [log(2 + 1) – log(2 + 0)]
= log 2 – log 3 + log 2 ...[∵ log 1 = 0]
= `log ((2 xx 2)/3)`
= `log(4/3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_1^3x^2log x dx`
Solve the following.
`int_1^3x^2 logx dx`