हिंदी

Evaluate the following : ∫01t21-t⋅dt - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`

योग

उत्तर

We use the property,

`int_0^a f(t)*dt = int_0^a f(a - t)*dt`

∴ `int_0^1 t^2 sqrtt(1 - t)*dt = int_0^1 (1 - t)^2 sqrt(1 - 1 + t)*dt`

= `int_0^1 (1 - 2t + t^2)sqrt(t)*dt`

= `int_0^1 (t^(1/2) - 2t^(3/2) + t^(5/2))*dt`

= `[(t^(3/2))/(3/2) - 2*(t(5)/(2))/(5/2) + (t^(7/2))/(7/2)]_0^1`

= `(2)/(3)(1)^(3/2) - (4)/(5)(1)^(5/2) + (2)/(7)(1)^(7/2) - 0`

= `(2)/(3) - (4)/(5) + (2)/(7) - 0`

= `(70 - 84 + 30)/(105)`

= `(16)/(105)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 3.13 | पृष्ठ १७२

संबंधित प्रश्न

Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×