Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
उत्तर
Let I = `int_0^3 x^2(3 - x)^(5/2)*dx`
We use the property `int_0^a f(x)*dx = int_0^a f(a - x)*dx`
Here, a = 3
Hence in I, changing x to 3 – x, we get
I = `int_0^3 (3 - x)^2 [3 - (3 - x)]^(5/2)*dx`
= `int_0^3 (9 - 6x + x^2)x^(5/2)*dx`
= `int_0^3 [9x^(5/2) - 6x^(7/2) + x^(9/2)]*dx`
= `9 int_0^3 x^(5/2)*dx - 6int_0^3 x^(7/2)*dx + int_0^3 x^(9/2)*dx`
= `9[(x^(7/2))/(7/2)]_0^3 - 6[(x^(9/2))/(9/2)]_0^3 + 9[(x^(11/2))/(11/2)]_0^3`
= `9[(2.3^(7/2))/7 - 0] - 6[(2.3^(9/2))/9 - 0] + [2/11*3^(11/2) - 0]`
= `(18)/(7) 3^(7/2) - (2.6)/9*3^(7/2)*3 + 2/11*3^(7/2)*3^2`
= `2(3)^(7/2)[9/7 - 2 + 9/11]`
= `2(3)^(7/2)[(99 - 154 + 63)/77]`
= `2(3)^(7/2) xx 8/77`
= `16/77(3)^(7/2)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3 x^2 log x dx`