हिंदी

Prove that: ,Ifis an even function,ifis an odd function∫-aaf(x)dx =2∫0af(x)dx,If f(x) is an even function =0,if f(x) is an odd function - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`

योग

उत्तर

L.H.S becomes

`int_(-a)^a f(x)  dx = int_(-a)^0 f(x) dx + int_0^a  f(x) dx`   .......(i)

Consider `int_(-a)^0 f(x) dx`

Put x = – t

∴ dx = – dt

When x = – a, t = a

and when x = 0, t = 0

∴ `int_(-a)^0 f(x) dx = int_a^0 f(-t)(-dt)`

= `-int_a^0 f(-t) dt`

= `int_0^a f(-t) dt`    ......`[∵ int_a^b f(x) dx = - int_b^a f(x) dx]`

= `int_0^a f(-x) dx`    ......`[∵ int_a^b f(x) dx = int_a^b f(t) dt]`

Equation (i) becomes

`int_(-a)^a f(x) dx = int_0^a f(-x) dx + int_0^a f(x) dx`

= `int_0^a [f(-x) + f(x)] dx` ......(ii)

Case I:

If f(x) is an even function, then f(– x) = f(x),

Equation (ii) becomes

`int_(-a)^a f(x) dx = 2* int_0^a f(x) dx`

Case II:

If f(x) is an odd function, then f(– x) = – f(x),

Equation (ii) becomes

`int_(-a)^a f(x) dx` = 0

`{:(int_(-a)^a f(x) dx = 2* int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                    = 0",", "if"  f(x)  "is an odd function"):}`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Long Answers III

संबंधित प्रश्न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Solve the following.

`int_1^3 x^2 log x dx `


The principle solutions of the equation cos θ = `1/2` are ______.


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×