हिंदी

Evaluate : ∫19x+1x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`

योग

उत्तर

`int_1^9(x + 1)/sqrt(x)*dx = int_1^9(x/sqrt(x) + 1/sqrt(x))*dx`

= `int_1^9 x^(1/2)*dx + int_1^9 x^(-1/2)*dx`

= `[(x^(3/2))/(3/2)]_1^9 + [(x^(1/2))/(1/2)]_1^9`

= `(2)/(3)[9^(3/2) - 1^(3/2)] + 2[9^(1/2) - 1^(1/2)]`

= `(2)/(3)[(3^2)^(3/2) - 1] + 2[3 - 1]]`

= `(2)/(3)[27 - 1] + 4`

= `(52)/(3) + 4`

= `(64)/(3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

संबंधित प्रश्न

Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×