Advertisements
Advertisements
Question
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Solution
`int_1^9(x + 1)/sqrt(x)*dx = int_1^9(x/sqrt(x) + 1/sqrt(x))*dx`
= `int_1^9 x^(1/2)*dx + int_1^9 x^(-1/2)*dx`
= `[(x^(3/2))/(3/2)]_1^9 + [(x^(1/2))/(1/2)]_1^9`
= `(2)/(3)[9^(3/2) - 1^(3/2)] + 2[9^(1/2) - 1^(1/2)]`
= `(2)/(3)[(3^2)^(3/2) - 1] + 2[3 - 1]]`
= `(2)/(3)[27 - 1] + 4`
= `(52)/(3) + 4`
= `(64)/(3)`.
RELATED QUESTIONS
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
If `int_0^"a" (2x + 1) "d"x` = 2, find a
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2log x dx`