Advertisements
Advertisements
Question
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Solution
Let I = `int_(−9)^9 x^3/(4 − x^2).dx`
We know that, If f(−x) = f(x), f(x) is an even function. If f(−x) = −f(x), f(x) is an odd function.
f(x) = `x^3/(4 – x^2)`
∴ f(– x) = `(– x)^3/[4 – ( – x)^2]`
∴ f(– x) = `(−x^3)/(4 – x^2)`
∴ f(– x) = – f(x)
∴ If f(−x) = −f(x), f(x) is an odd function.
∴ `int_(−9)^9 x^3/(4 − x^2).dx = 0 ...[int_(−"a")^"a" f(x) = 0, if f(x) "odd function"]`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3 x^2 log x dx `