Advertisements
Advertisements
Question
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solution
Let I = `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
= `int_1^2 e^(2x)* (1)/xdx - int_1^2 e^(2x)* (1)/(2x^2)dx`
= `[(1)/x inte^(2x)*dx]_1^2 - int_1^2[d/dx(1/x)int e^(2x)*dx]dx - (1)/(2)`
= `[1/x* (e^(2x))/(2)]_1^2 - int_1^2(-1/x^2)*( e^(2x))/(2)dx - (1)/(2) int_1^2 e^(2x) 1/x^2*dx`
= `(1/4 e^4 - e^2/2) + (1)/(2) int_1^2 e^(2x)* (1)/x^2dx - (1)/(2) int_1^2 e^(2x)* (1)/x^2dx`
∴ I = `e^4/(4) - e^2/(2)`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`