English

Evaluate : ∫012sin-1x(1-x2)32⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`

Sum

Solution

Let I = `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`

= `int_0^(1/sqrt(2)) (sin^-1x)/((1 - x^2)sqrt(1 - x^2))*dx`

Put sin–1 x = t

∴ `(1)/sqrt(1 - x^2)*dx` = dt
Also, x = sin t

When x = `(1)/sqrt(2), t = sin^-1 (1/sqrt(2)) = pi/(4)`

When x = 0, t = sin–10 = 0

∴ I = `int_0^(pi/4) t/(1 - sin^2t)*dt`

= `int_0^(pi/4) t/(cos^2t)*dt`

= `int_0^(pi/4) t sec^2t*dt`

= `[t int sec^2t*dt]_0^(pi/4) - int_0^(pi/4)[d/dt (t) int sec^2t*dt]*dt`

= `[t tant]_0^(p/4) - int_0^(pi/4) 1*tant*dt`

= `[pi/4 tan  pi/4 - 0] -[log |sect|]_0^(pi/4)`

= `pi/(4) - [log(sec  pi/4) - log (sec 0)]`

= `pi/(4) - [log sqrt(2) - log 1]`

= `pi/(4) - (1)/(2)log2`.                       ...[∵ log 1 = 0]

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite integral:

`int_1^3 logx  dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×