Advertisements
Advertisements
Question
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Solution
Let I = `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
= `int_0^(1/sqrt(2)) (sin^-1x)/((1 - x^2)sqrt(1 - x^2))*dx`
Put sin–1 x = t
∴ `(1)/sqrt(1 - x^2)*dx` = dt
Also, x = sin t
When x = `(1)/sqrt(2), t = sin^-1 (1/sqrt(2)) = pi/(4)`
When x = 0, t = sin–10 = 0
∴ I = `int_0^(pi/4) t/(1 - sin^2t)*dt`
= `int_0^(pi/4) t/(cos^2t)*dt`
= `int_0^(pi/4) t sec^2t*dt`
= `[t int sec^2t*dt]_0^(pi/4) - int_0^(pi/4)[d/dt (t) int sec^2t*dt]*dt`
= `[t tant]_0^(p/4) - int_0^(pi/4) 1*tant*dt`
= `[pi/4 tan pi/4 - 0] -[log |sect|]_0^(pi/4)`
= `pi/(4) - [log(sec pi/4) - log (sec 0)]`
= `pi/(4) - [log sqrt(2) - log 1]`
= `pi/(4) - (1)/(2)log2`. ...[∵ log 1 = 0]
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_1^3 logx dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx