Advertisements
Advertisements
Question
`int_2^3 dx/(x(x^3 - 1))` = ______.
Options
`(1)/(3) log (208/189)`
`(1)/(3) log (189/208)`
`log (208/189)`
`log (189/208)`
Solution
`int_2^3 dx/(x(x^3 - 1)) = bbunderline((1)/(3) log (208/189))`.
Explanation:
`int_2^3 dx/(x(x^3 - 1))`
x3 − 1 = y
⇒ 3x2 dx = dy
⇒ `x^2 dx = dy/3`
⇒ `int_7^26 (dy/3)/((y + 10 y)`
⇒ `1/3 int_7^26 dy/(y (y + 1))`
`1/y - 1/(y + 1)`
⇒ `(y + 1 - y)/(y(y + 1)`
⇒ `1/3 int_7^26(1/y - 1/(y + 1)) dy`
`int1/(y + a) dy = log (y + a)`
⇒ `1-3 [log y - log (y + 1)]_7^26`
⇒ `1/3 {(log 26 - log 7) - (log 27 - log 8)}`
⇒ `1/3 (log 26/7 - log 27/8)`
= `1/3 log (26 xx 8)/(7 xx 27)`
⇒ `I = 1/3 log 208/189`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 logxdx`