English

∫23dxx(x3-1) = ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

`int_2^3 dx/(x(x^3 - 1))` = ______.

Options

  • `(1)/(3) log (208/189)`

  • `(1)/(3) log (189/208)`

  • `log (208/189)`

  • `log (189/208)`

MCQ
Fill in the Blanks

Solution

`int_2^3 dx/(x(x^3 - 1)) = bbunderline((1)/(3) log (208/189))`.

Explanation:

`int_2^3 dx/(x(x^3 - 1))`

x3 − 1 = y

⇒ 3x2 dx = dy

⇒ `x^2 dx = dy/3`

⇒ `int_7^26 (dy/3)/((y + 10 y)`

⇒ `1/3 int_7^26 dy/(y (y + 1))`

`1/y - 1/(y + 1)`

⇒ `(y + 1 - y)/(y(y + 1)`

⇒ `1/3 int_7^26(1/y - 1/(y + 1)) dy`

`int1/(y + a) dy = log (y + a)`

⇒ `1-3 [log y - log (y + 1)]_7^26`

⇒ `1/3 {(log 26 - log 7) - (log  27 - log 8)}`

⇒ `1/3 (log 26/7 - log 27/8)`

= `1/3 log  (26 xx 8)/(7 xx 27)`

⇒ `I = 1/3 log  208/189`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 175]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 1.01 | Page 175

RELATED QUESTIONS

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 logxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×