Advertisements
Advertisements
Question
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solution
Let I = `int_2^3 x/(x^2 - 1)*dx`
Put x2 – 1 = t
∴ 2x·dx = dt
∴ x·dx = `(1)/(2)*dt`
When x = 2, t = 22 – 1 = 3
When x = 3, t = 32 – 1 = 8
∴ I = `int_3^8 (1)/"t"*"dt"/(2)`
= `(1)/(2)int_3^8 "dt"/"t"`
= `(1)/(2)[log |"t"|]_3^8`
= `(1)/(2)(log 8 - log 3)`
∴ I = `(1)/(2) log (8/3)`.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`