Advertisements
Advertisements
Question
Choose the correct alternative :
`int_0^2 e^x*dx` =
Options
e – 1
1 – e
1 – e2
e2 – 1
Solution
`int_0^2 e^x*dx`
= `[e^x]_0^2`
= e2 – e0
= e2 – 1.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`