Advertisements
Advertisements
Question
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Options
`int_"b"^"a" f(x)*dx`
`-int_"a"^"b" f(x)*dx`
`-int_"b"^"a" f(x)*dx`
`int_"0"^"a" f(x)*dx`
Solution
`int_"a"^"b" f(x)*dx` = `-int_"b"^"a" f(x)*dx`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Evaluate the following definite integral:
`int_1^3 log x dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Solve the following.
`int_1^3x^2 logx dx`