Advertisements
Advertisements
Question
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Options
7
49
0
`(7)/(2)`
Solution
Let f(x) = `x^3/(x^2 + 7)`
∴ f(– x) = `(-x)^3/((-x)^2 + 7)`
= `x^3/(x^2 + 7)`
= – f(x)
∴ f(x) is an odd function.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Fill in the blank : `int_2^3 x^4*dx` = _______
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite integral:
`int_1^3 logx.dx`