Advertisements
Advertisements
Question
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Options
`1/2`
`5/2`
`5/211`
`211/5`
Solution
`211/5`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.