Advertisements
Advertisements
Question
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Options
`sqrt(2)(2sqrt(2) - 2)`
`sqrt(2)/(3)(2 - 2sqrt(2))`
`(2sqrt(2) - 2)/(3)`
`4sqrt(2)`
Solution
`4sqrt(2)`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
`int_2^3 dx/(x(x^3 - 1))` = ______.
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
`int_0^1 1/(2x + 5)dx` = ______
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`