English

Choose the correct option from the given alternatives : If dx1+x-x=k3, then k is equal to - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to

Options

  • `sqrt(2)(2sqrt(2) - 2)`

  • `sqrt(2)/(3)(2 - 2sqrt(2))`

  • `(2sqrt(2) - 2)/(3)`

  • `4sqrt(2)`

MCQ

Solution

`4sqrt(2)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 175]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 1.05 | Page 175

RELATED QUESTIONS

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


`int_2^3 dx/(x(x^3 - 1))` = ______.


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Choose the correct alternative :

`int_0^2 e^x*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^3 log x  "d"x`


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


`int_0^1 1/(2x + 5)dx` = ______


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×