Advertisements
Advertisements
Question
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Options
2
0
`(8)/(3)`
a
Solution
`int_0^"a" 3x^2*dx` = 8
∴ `3[x^3/3]_0^"a"` = 8
∴ a3 = 23
∴ a = 2.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_1^3x^2 logx dx`