Advertisements
Advertisements
Question
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Options
True
False
Solution
`int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx` False.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`