English

Evaluate : ∫3512x+3-2x-3⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`

Sum

Solution

`int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`

= `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3)) xx (sqrt(2x + 3) + sqrt(2x - 3))/(sqrt(2x + 3) + sqrt(2x - 3))*dx`

= `int_3^5 (sqrt(2x + 3) + sqrt(2x - 3))/((2x + 3) - (2x - 3))*dx`

= `(1)/(6) int_3^5 (2x + 3)^(1/2)*dx + (1)/(6) int_3^5 (2x - 3)^(1/2)*dx`

= `(1)/(6)[(2x + 3^(3/2))/(2(3/2))]_3^5 + (1)/(6)[((2x - 3)^(3/2))/(2(3/2))]_3^5`

= `(1)/(18)[(10 + 3)^(3/2) - (6 + 3)^(3/2)] + (1)/(18)[(10 - 3)^(3/2) - (6 - 3)^(3/2)]`

= `(1)/(18)[13sqrt(13) - 9sqrt(9)] + (1)/(18)[7sqrt(7) - 3sqrt(3)]`

= `(1)/(18)(13sqrt(13) - 27 + 7sqrt(7) - 3sqrt(3))`

= `(1)/(18)(13sqrt(13) + 7sqrt(7) - 3sqrt(3) - 27)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 171]

APPEARS IN

RELATED QUESTIONS

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×