Advertisements
Advertisements
Question
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Solution
`int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
= `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3)) xx (sqrt(2x + 3) + sqrt(2x - 3))/(sqrt(2x + 3) + sqrt(2x - 3))*dx`
= `int_3^5 (sqrt(2x + 3) + sqrt(2x - 3))/((2x + 3) - (2x - 3))*dx`
= `(1)/(6) int_3^5 (2x + 3)^(1/2)*dx + (1)/(6) int_3^5 (2x - 3)^(1/2)*dx`
= `(1)/(6)[(2x + 3^(3/2))/(2(3/2))]_3^5 + (1)/(6)[((2x - 3)^(3/2))/(2(3/2))]_3^5`
= `(1)/(18)[(10 + 3)^(3/2) - (6 + 3)^(3/2)] + (1)/(18)[(10 - 3)^(3/2) - (6 - 3)^(3/2)]`
= `(1)/(18)[13sqrt(13) - 9sqrt(9)] + (1)/(18)[7sqrt(7) - 3sqrt(3)]`
= `(1)/(18)(13sqrt(13) - 27 + 7sqrt(7) - 3sqrt(3))`
= `(1)/(18)(13sqrt(13) + 7sqrt(7) - 3sqrt(3) - 27)`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`