Advertisements
Advertisements
Question
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Solution
Let I = `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Put sin x = t
∴ cos x·dx = dt
When x = `pi/(2), t = sin pi/(2)` = 1
When x = 0, t = sin 0 = 0
∴ I = `int_0^1 dt/((1 + t)(2 + t)`
= `int_0^1((2 + t) - (1 + t))/((1 + t)(2 + t))*dt`
= `int_0^1[1/(1 + t) - 1/(2 + t)]*dt`
= `int_0^1 1/(1 + t)*dt - int_0^1 1/(2 + t)*dt`
= `[log |1 + t|]_0^1 - [log|2 + t|]_0^1`
= [log(1 + 1) – log(1 + 0)] – [log(2 + 1) – log(2 + 0)]
= log 2 – log 3 + log 2 ...[∵ log 1 = 0]
= `log ((2 xx 2)/3)`
= `log(4/3)`.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`