English

Evaluate : ∫0π2cosx(1+sinx)(2+sinx)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`

Sum

Solution

Let I = `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Put sin x = t
∴ cos x·dx = dt

When x = `pi/(2), t = sin  pi/(2)` = 1

When x = 0, t = sin 0 = 0

∴ I = `int_0^1 dt/((1 + t)(2 + t)`

= `int_0^1((2 + t) - (1 + t))/((1 + t)(2 + t))*dt`

= `int_0^1[1/(1 + t) - 1/(2 + t)]*dt`

= `int_0^1 1/(1 + t)*dt - int_0^1 1/(2 + t)*dt`

= `[log |1 + t|]_0^1 - [log|2 + t|]_0^1`
= [log(1 + 1) – log(1 + 0)] – [log(2 + 1) – log(2 + 0)]
= log 2 – log 3 + log 2    ...[∵ log 1 = 0]

= `log ((2 xx 2)/3)`

= `log(4/3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×