English

∫abf(x)dx=∫abf(t)dt - Mathematics and Statistics

Advertisements
Advertisements

Question

`int_a^b f(x) dx = int_a^b f (t) dt`

Options

  • True

  • False

MCQ
True or False

Solution

The statement is true.

Explanation:

The equality holds because the integral of a function over an interval [a,b] does not depend on the variable used to represent the function's input. Whether we use x, t, or any other symbol, the integral's value remains the same as long as the function f and the limits of integration a and b are unchanged. This is a property of definite integrals, reflecting that they calculate the net area under the curve of f from a to b, which is independent of the variable of integration's notation.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×