Advertisements
Advertisements
Question
`int_a^b f(x) dx = int_a^b f (t) dt`
Options
True
False
Solution
The statement is true.
Explanation:
The equality holds because the integral of a function over an interval [a,b] does not depend on the variable used to represent the function's input. Whether we use x, t, or any other symbol, the integral's value remains the same as long as the function f and the limits of integration a and b are unchanged. This is a property of definite integrals, reflecting that they calculate the net area under the curve of f from a to b, which is independent of the variable of integration's notation.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`