Advertisements
Advertisements
Question
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Solution
Let, I = `int_0^1 (x^2 + 3x + 2)/sqrtxdx`
= `int_0^1[x^2/sqrtx + (3x)/sqrtx + 2/sqrtx]dx`
= `int_0^1[x^2/x^{1/2} + (3x)/x^{1/2} + 2/x^{1/2}]dx`
= `int_0^1[x^{3/2} + 3x^{1/2} + 2/sqrtx]dx`
I = `int_0^1 x^{3/2}dx + 3int_0^1 x^{1/2}dx + 2int_0^1 1/sqrtxdx`
= `[x^{5/2}/(5/2)]_0^1 + 3[x^{3/2}/(3/2)]_0^1 + 2[2sqrtx]_0^1`
= `[1^{5/2}/(5/2) - 0^{5/2}/(5/2)] + 3[1^{3/2}/(3/2) - 0^{3/2}/(3/2)] + 2[2sqrt1 - 2sqrt0]`
I = `[1 xx 2/5] + 3[1 xx 2/3] + 2[2 xx 1 - 2 xx 0]`
I = `2/5 + 3 xx 2/3 + 2 xx 2`
= `2/5 + 6/3 + 4 = (6 + 30)/15 + 4 = (6 + 30 + 60)/15 = 96/15 = 32/5`
∴ I = `32/5`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`