English

Evaluate : ∫0π13+2sinx+cosx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`

Sum

Solution

Let I = `int_0^pi (1)/(3 + 2sinx + cosx)*dx`

Put `tan  x/(2)` = t
∴ x = 2 tan–1 t

∴ dx = `(2dt)/(1 + t^2)`
and
sinx = `(2t)/(1 + t^2), cos x = (1 - t^2)/(1 + t^2)`
When x = 0, t = tan0 = 0
When x = `pi, t = tan  pi/(2) = oo`

∴ I = `int_0^oo (1)/(3 + 2((2t)/(1 + t^2)) + ((1 - t^2)/(1 + t^2)))*(2dt)/(1 + t^2)`

= `int_0^oo (1)/(2t^2 + 4t + 4)*dt`

= `(2)/(2) int_0^oo (1)/(t^2 + 2t + 2)*dt`

= `int_0^oo (1)/((t^2 + 2t + 1) + 1)*dt`

= `int_0^oo (1)/((t^2 + 2t + 1 + 1)*dt`

= `int_0^oo (1)/((t + 1)^2 + (1)^2)*dt`

= `(1)/(1)[tan^-1 ((t + 1)/1)]_0^oo`

= `[tan^-1 (t + 1)]_0^oo`

= `tan^-1 oo - tan^1 1`

= `pi/(2) - pi/(4)`

= `pi/(4)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2 logx  dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×