Advertisements
Advertisements
Question
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Solution
Let I = `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Put `tan x/(2)` = t
∴ x = 2 tan–1 t
∴ dx = `(2dt)/(1 + t^2)`
and
sinx = `(2t)/(1 + t^2), cos x = (1 - t^2)/(1 + t^2)`
When x = 0, t = tan0 = 0
When x = `pi, t = tan pi/(2) = oo`
∴ I = `int_0^oo (1)/(3 + 2((2t)/(1 + t^2)) + ((1 - t^2)/(1 + t^2)))*(2dt)/(1 + t^2)`
= `int_0^oo (1)/(2t^2 + 4t + 4)*dt`
= `(2)/(2) int_0^oo (1)/(t^2 + 2t + 2)*dt`
= `int_0^oo (1)/((t^2 + 2t + 1) + 1)*dt`
= `int_0^oo (1)/((t^2 + 2t + 1 + 1)*dt`
= `int_0^oo (1)/((t + 1)^2 + (1)^2)*dt`
= `(1)/(1)[tan^-1 ((t + 1)/1)]_0^oo`
= `[tan^-1 (t + 1)]_0^oo`
= `tan^-1 oo - tan^1 1`
= `pi/(2) - pi/(4)`
= `pi/(4)`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`