Advertisements
Advertisements
Question
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Solution
Given, `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11
∴ `[(3x^3)/3 + (2x^2)/2 + x]_1^"a"` = 11
∴ `[x^3 + x^2 + x]_1^"a"` = 11
∴ (a3 + a2 + a) – (1 + 1 + 1) = 11
∴ a3 + a2 + a – 3 = 11
∴ a3 + a2 + a – 14 = 0
∴ (a – 2)(a2 + 3a + 7) = 0
∴ a = 2 or a2 + 3a + 7 = 0
But, a2 + 3a + 7 = 0 does not have real roots.
∴ a = 2
APPEARS IN
RELATED QUESTIONS
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`