Advertisements
Advertisements
Question
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Solution
Let I = `int_0^9 (1)/(1 + sqrt(x))*dx`
Put `1 + sqrt(x)` = t
∴ x = (t – 1)2
∴ dx = 2(t – 1)dt
When x = 0, t = 1 + 0 = 1
When x = 9, t = `1 + sqrt(9)`
= 1 + 3 = 4
∴ I = `int_1^4 (2(t - 1))/"t"*"dt"`
= `2int_1^4(1 - 1/"t")*"dt"`
= `2]"t" - log|"t"|]_1^4`
= 2 [(4 – log |4|) – (1 – log |1|)]
= 2 [4 – log 4 – (1 – 0)]
= 2 [4 – log 22 – 1)
= 2 (3 – 2log 2)
∴ I = 6 – 4 log 2.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Solve the following : `int_1^2 x^2*dx`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`