English

Evaluate : ∫0π2sinx-cosx1+sinxcosx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`

Sum

Solution

Let I = `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`

We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.

Here `a = pi/(2)`.

Hence In I, we change x by `pi/(2) - x`.

∴ I = `int_0^(pi/2) (sin(pi/2 - x) - cos(pi/2 - x))/(1 + sin(pi/2 - x) cos(pi/2 - x)`

= `int_0^(pi/2) (cosx - sinx)/(1 + cosx sinx)*dx`

= `- int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`

= – I
∴ 2I = 0
∴ I = 0.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Solve the following.

`int_1^3 x^2 log x dx `


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×