Advertisements
Advertisements
Question
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Solution
Let I = `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.
Here `a = pi/(2)`.
Hence In I, we change x by `pi/(2) - x`.
∴ I = `int_0^(pi/2) (sin(pi/2 - x) - cos(pi/2 - x))/(1 + sin(pi/2 - x) cos(pi/2 - x)`
= `int_0^(pi/2) (cosx - sinx)/(1 + cosx sinx)*dx`
= `- int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
= – I
∴ 2I = 0
∴ I = 0.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3 x^2 log x dx `
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`