Advertisements
Advertisements
Question
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Options
`-log(8/3)`
`log(8/3)`
`log(3/8)`
`-log(3/8)`
Solution
Let I = `int_(-2)^3 (1)/(x + 5)*dx`
= `[log |x + 5|]_(-2)^3`
= [log |3 + 5| – log |–2 + 5|]
= log 8 – log 3
∴ I = `log(8/3)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`