Advertisements
Advertisements
Question
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Solution
Let I = `int_2^4 x/(x^2 + 1)*dx`
Put x2 + 1 = t
∴ 2x·dx = dt
∴ x·dx = `"dt"/(2)`
When x = 2, t = 22 + 1 = 5
When x = 4, t = 42 + 1 = 17
∴ I = `int_5^17 (1)/"t"*"dt"/2`
= `(1)/(2) int_5^17 "dt"/"t"`
= `(1)/(2)[log|"t"|]_5^17`
= `(1)/(2)(log 17 - log 5)`
∴ I = `(1)/(2)log (17/5)`.
APPEARS IN
RELATED QUESTIONS
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 logxdx`