Advertisements
Advertisements
Question
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solution
Let I = `int_0^1 (1)/(2x - 3)*dx`
Put 2x – 3 =t
∴ 2·dx = dt
∴ dx = `"dt"/(2)`
When x = 0t = 2(0) – 3 = – 3
When x = 1, t = 2(1) – 3 = – 1
∴ I = `int_(-3)^(-1) (1)/"t"*"dt"/(2)`
= `(1)/(2) int_(-3)^(-1) "dt"/"t"`
= `(1)/(2)[log |"t"|]_(-3)^(-1)`
= `(1)/(2)[log|-1| - log|-3|]`
= `(1)/(2)(log 1 - log 3)`
= `(1)/(2)(0 - log 3)`
∴ I = `-(1)/(2) log 3`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`